Archives of Pediatric Infectious Diseases

Published by: Kowsar

Integron-Mediated Multidrug and Quinolone Resistance in Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae

Alka Hasani 1 , Ali Purmohammad 1 , * , Mohammad Ahangarzadeh Rezaee 2 , Akbar Hasani 3 and Masoud Dadashi 4
Authors Information
1 Infectious and Tropical Diseases Research Center, Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
2 Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
3 Department of Clinical Biochemistry and Laboratory Sciences, Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
4 Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Archives of Pediatric Infectious Diseases: April 01, 2017, 5 (2); e36616
  • Published Online: August 2, 2016
  • Article Type: Research Article
  • Received: February 3, 2016
  • Revised: May 1, 2016
  • Accepted: May 10, 2016
  • DOI: 10.5812/pedinfect.36616

To Cite: Hasani A, Purmohammad A, Ahangarzadeh Rezaee M, Hasani A, Dadashi M. Integron-Mediated Multidrug and Quinolone Resistance in Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae, Arch Pediatr Infect Dis. 2017 ; 5(2):e36616. doi: 10.5812/pedinfect.36616.

Copyright © 2016, Pediartric Infections Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Pruitt BJ, McManus AT. The changing epidemiology of infection in burn patients. World J Surg. 1992; 16(1): 57-67[PubMed]
  • 2. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006; 19(2): 403-34[DOI][PubMed]
  • 3. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2015; 8(2): 429-40[DOI][PubMed]
  • 4. Bennett JW, Robertson JL, Hospenthal DR, Wolf SE, Chung KK, Mende K, et al. Impact of extended spectrum beta-lactamase producing Klebsiella pneumoniae infections in severely burned patients. J Am Coll Surg. 2010; 211(3): 391-9[DOI][PubMed]
  • 5. Pakzad I, Karin MZ, Taherikalani M, Boustanshenas M, Lari A. Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients. GMS Hygiene Infect Control. 2013; 8(2)
  • 6. Lagace-Wiens PR, Nichol KA, Nicolle LE, Decorby MR, McCracken M, Alfa MJ, et al. ESBL genotypes in fluoroquinolone-resistant and fluoroquinolone-susceptible ESBL-producing Escherichia coli urinary isolates in Manitoba. Can J Infect Dis Med Microbiol. 2007; 18(2): 133-7[PubMed]
  • 7. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001; 32(8): 1162-71[DOI][PubMed]
  • 8. Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis. 2001; 33(8): 1288-94[DOI][PubMed]
  • 9. Garza-Gonzalez E, Mendoza Ibarra SI, Llaca-Diaz JM, Gonzalez GM. Molecular characterization and antimicrobial susceptibility of extended-spectrum {beta}-lactamase-producing Enterobacteriaceae isolates at a tertiary-care centre in Monterrey, Mexico. J Med Microbiol. 2011; 60: 84-90[DOI][PubMed]
  • 10. Machado E, Canton R, Baquero F, Galan JC, Rollan A, Peixe L, et al. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother. 2005; 49(5): 1823-9[DOI][PubMed]
  • 11. Rao AN, Barlow M, Clark LA, Boring J3, Tenover FC, McGowan JJ. Class 1 integrons in resistant Escherichia coli and Klebsiella spp., US hospitals. Emerg Infect Dis. 2006; 12(6): 1011-4[PubMed]
  • 12. Fallah F, Karimi A, Goudarzi M, Shiva F, Navidinia M, Jahromi MH, et al. Determination of integron frequency by a polymerase chain reaction-restriction fragment length polymorphism method in multidrug-resistant Escherichia coli, which causes urinary tract infections. Microb Drug Resist. 2012; 18(6): 546-9[DOI][PubMed]
  • 13. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott's Diagnostic Microbiology. 2014; : 307-15
  • 14. McCartney JE, Collee JG, Mackie TJ. Practical Medical Microbiology. 1989;
  • 15. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplements M100-S21. 2011;
  • 16. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual+ Cold Spring Harbor. 1989;
  • 17. Sompolinsky D, Nitzan Y, Tetry S, Wolk M, Vulikh I, Kerrn MB, et al. Integron-mediated ESBL resistance in rare serotypes of Escherichia coli causing infections in an elderly population of Israel. J Antimicrob Chemother. 2005; 55(1): 119-22[DOI][PubMed]
  • 18. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn RG. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother. 1999; 44(3): 377-80[PubMed]
  • 19. Pagani L, Dell'Amico E, Migliavacca R, D'Andrea MM, Giacobone E, Amicosante G, et al. Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol. 2003; 41(9): 4264-9[PubMed]
  • 20. Bansal S, Tandon V. Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates. Int J Antimicrob Agents. 2011; 37(3): 253-5[DOI][PubMed]
  • 21. Vasilaki O, Ntokou E, Ikonomidis A, Sofianou D, Frantzidou F, Alexiou-Daniel S, et al. Emergence of the plasmid-mediated quinolone resistance gene qnrS1 in Escherichia coli isolates in Greece. Antimicrob Agents Chemother. 2008; 52(8): 2996-7[DOI][PubMed]
  • 22. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003; 41(12): 5407-13[PubMed]
  • 23. Navidinia M, Peerayeh SN, Fallah F, Bakhshi B, Sajadinia RS. Phylogenetic grouping and pathotypic comparison of urine and fecal Escherichia coli isolates from children with urinary tract infection. Braz J Microbiol. 2014; 45(2): 509-14[PubMed]
  • 24. Navidinia M, Peerayeh SN, Fallah F, Bakhshi B, Adabian S, Alimehr S, et al. Distribution of the Pathogenicity Islands Markers (PAIs) in Uropathogenic E. coli Isolated from Children in Mofid Children Hospital. Arch Pediatr Infect Dis. 2013; 1(2): 75-9
  • 25. Murphy KD, Lee JO, Herndon DN. Current pharmacotherapy for the treatment of severe burns. Expert Opin Pharmacother. 2003; 4(3): 369-84[DOI][PubMed]
  • 26. Mokaddas E, Rotimi VO, Sanyal SC. In vitro activity of piperacillin/tazobactam versus other broad-spectrum antibiotics against nosocomial gram-negative pathogens isolated from burn patients. J Chemother. 1998; 10(3): 208-14[DOI][PubMed]
  • 27. Keen E3, Robinson BJ, Hospenthal DR, Aldous WK, Wolf SE, Chung KK, et al. Incidence and bacteriology of burn infections at a military burn center. Burns. 2010; 36(4): 461-8[DOI][PubMed]
  • 28. Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C. Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother. 2002; 46(10): 3156-63[PubMed]
  • 29. Rahal JJ, Urban C, Horn D, Freeman K, Segal-Maurer S, Maurer J, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA. 1998; 280(14): 1233-7[PubMed]
  • 30. Schwaber MJ, Navon-Venezia S, Schwartz D, Carmeli Y. High levels of antimicrobial coresistance among extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2005; 49(5): 2137-9[DOI][PubMed]
  • 31. Riyahi Zaniani F, Meshkat Z, Naderi Nasab M, Khaje-Karamadini M, Ghazvini K, Rezaee A, et al. The prevalence of TEM and SHV genes among extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae. Iranian J Basic Med Sci. 2012; 15(1): 654-60
  • 32. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9): 597-602[DOI][PubMed]
  • 33. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eur Commun Dis Bull. 2008; 13(47): 5437-53
  • 34. Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005; 56(1): 52-9[DOI][PubMed]
  • 35. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18(4): 657-86[DOI][PubMed]
  • 36. Rupp ME, Fey PD. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Drugs. 2003; 63(4): 353-65
  • 37. Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G, et al. Occurrence of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae in Italy: implications for resistance to beta-lactams and other antimicrobial drugs. Antimicrob Agents Chemother. 2002; 46(1): 196-202[PubMed]
  • 38. Al-Zarouni M, Senok A, Rashid F, Al-Jesmi SM, Panigrahi D. Prevalence and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract. 2008; 17(1): 32-6[DOI][PubMed]
  • 39. Ozgunes I, Erben N, Kiremitci A, Kartal ED, Durmaz G, Colak H, et al. The prevalence of extended-spectrum beta lactamase-producing Escherichia coli and Klebsiella pneumoniae in clinical isolates and risk factors. Saudi Med J. 2006; 27(5): 608-12[PubMed]
  • 40. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004; 48(1): 1-14[PubMed]
  • 41. Khosravi AD, Hoveizavi H, Mehdinejad M. Prevalence of Klebsiella pneumoniae encoding genes for CTX-M-1, TEM-1 and SHV-1 extended-spectrum beta lactamases (ESBL) enzymes in clinical specimens. Jundishapur J Microbiol. 2013; 6(10)
  • 42. Moosavian M, Deiham B. Distribution of TEM, SHV and CTX-M Genes among ESBL-producing Enterobacteriaceae isolates in Iran. Afr J Microbiol Res. 2012; 6(26): 5433-9
  • 43. Hyle EP, Lipworth AD, Zaoutis TE, Nachamkin I, Fishman NO, Bilker WB, et al. Risk factors for increasing multidrug resistance among extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Clin Infect Dis. 2005; 40(9): 1317-24[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments