Archives of Pediatric Infectious Diseases

Published by: Kowsar

Prevalence of blaOXA-1 and blaDHA-1 AmpC β-Lactamase-Producing and Methicillin-Resistant Staphylococcus aureus in Iran

Shahnaz Armin 1 , Fatemeh Fallah 1 , Masoumeh Navidinia 2 , * and Sahar Vosoghian 1
Authors Information
1 Pediatric Infection Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 School of Allied Medical Sciences, Department of Medical Laboratory Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Article information
  • Archives of Pediatric Infectious Diseases: October 2017, 5 (4); e36778
  • Published Online: July 16, 2016
  • Article Type: Research Article
  • Received: February 3, 2016
  • Revised: May 16, 2016
  • Accepted: June 6, 2016
  • DOI: 10.5812/pedinfect.36778

To Cite: Armin S, Fallah F, Navidinia M, Vosoghian S. Prevalence of blaOXA-1 and blaDHA-1 AmpC β-Lactamase-Producing and Methicillin-Resistant Staphylococcus aureus in Iran, Arch Pediatr Infect Dis. 2017 ; 5(4):e36778. doi: 10.5812/pedinfect.36778.

Copyright © 2016, Pediartric Infections Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Turlej A, Hryniewicz W, Empel J. Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: an overview. Pol J Microbiol. 2011; 60(2): 95-103[PubMed]
  • 2. Navidinia M. Detection of inducible clindamycin resistance (MLSBi) among methicillin-resistant Staphylococcus aureus (MRSA) isolated from health care providers. JPS. 2015; 6(1)
  • 3. Rosato AE, Kreiswirth BN, Craig WA, Eisner W, Climo MW, Archer GL. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2003; 47(4): 1460-3[PubMed]
  • 4. Navidinia M, Fallah F, Lajevardi B, Shirdoost M, Jamali J. Epidemiology of Methicillin-Resistant Staphylococcus aureus Isolated From Health Care Providers in Mofid Children Hospital. Arch Pediatr Infect Dis. 2015; 3(2)[DOI]
  • 5. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14(4): 933-51[DOI][PubMed]
  • 6. Poole K. Resistance to beta-lactam antibiotics. Cell Mol Life Sci. 2004; 61(17): 2200-23[DOI][PubMed]
  • 7. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010; 54(3): 969-76[DOI][PubMed]
  • 8. Liebana E, Batchelor M, Clifton-Hadley FA, Davies RH, Hopkins KL, Threlfall EJ. First report of Salmonella isolates with the DHA-1 AmpC beta-lactamase in the United Kingdom. Antimicrob Agents Chemother. 2004; 48(11): 4492[DOI][PubMed]
  • 9. Barlow M, Hall BG. Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J Mol Evol. 2002; 55(3): 314-21[DOI][PubMed]
  • 10. Bradford PA, Urban C, Jaiswal A, Mariano N, Rasmussen BA, Projan SJ, et al. SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother. 1995; 39(4): 899-905[PubMed]
  • 11. Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother. 2005; 56(1): 52-9[DOI][PubMed]
  • 12. Till PM. Bailey and Scott's Diagnostic Microbiology. 2013; : 232-47
  • 13. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, et al. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother. 2006; 50(3): 1001-12[DOI][PubMed]
  • 14. Performance standards for antimicrobial susceptibility testing; twenty-second informational supplements M100-S22. 2013; 32: 70-88
  • 15. Soares LC, Pereira IA, Pribul BR, Oliva MS, Coelho SMO, Souza MMS. Antimicrobial resistance and detection of mecA and blaZ genes in coagulase-negative Staphylococcus isolated from bovine mastitis. Pesq Vet Bras. 2012; 32(8): 692-6[DOI]
  • 16. Askarian M, Zeinalzadeh A, Japoni A, Alborzi A, Memish ZA. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus and its antibiotic susceptibility pattern in healthcare workers at Namazi Hospital, Shiraz, Iran. Int J Infect Dis. 2009; 13(5): 241-7[DOI][PubMed]
  • 17. Gupta M, Singh NP, Kumar A, Kaur IR. Cefoxitin disk diffusion test--better predictor of methicillin resistance in Staphylococcus aureus. Indian J Med Microbiol. 2009; 27(4): 379-80[DOI][PubMed]
  • 18. Kuehnert MJ, Kruszon-Moran D, Hill HA, McQuillan G, McAllister SK, Fosheim G, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001-2002. J Infect Dis. 2006; 193(2): 172-9[DOI][PubMed]
  • 19. Sugumar M, Kumar KM, Manoharan A, Anbarasu A, Ramaiah S. Detection of OXA-1 beta-lactamase gene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. PLoS One. 2014; 9(3): 91800[DOI][PubMed]
  • 20. Reference strains. 2015;
  • 21. Lu PL, Chin LC, Peng CF, Chiang YH, Chen TP, Ma L, et al. Risk factors and molecular analysis of community methicillin-resistant Staphylococcus aureus carriage. J Clin Microbiol. 2005; 43(1): 132-9[DOI][PubMed]
  • 22. Chambers HF. Community-associated MRSA--resistance and virulence converge. N Engl J Med. 2005; 352(14): 1485-7[DOI][PubMed]
  • 23. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, Jernigan JA, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005; 352(14): 1436-44[DOI][PubMed]
  • 24. Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res. 2013; 15(10)[DOI]
  • 25. Wagenlehner FM, Naber KG, Bambl E, Raab U, Wagenlehner C, Kahlau D, et al. Management of a large healthcare-associated outbreak of Panton-Valentine leucocidin-positive meticillin-resistant Staphylococcus aureus in Germany. J Hosp Infect. 2007; 67(2): 114-20[DOI][PubMed]
  • 26. Mohajeri P, Izadi B, Rezaei M, Farahani A. Frequency distribution of hospital-acquired mrsa nasal carriage among hospitalized patients in West of Iran. Jundishapur J Microbiol. 2013; 6(6): 9076
  • 27. Harbarth S, Sax H, Fankhauser-Rodriguez C, Schrenzel J, Agostinho A, Pittet D. Evaluating the probability of previously unknown carriage of MRSA at hospital admission. Am J Med. 2006; 119(3): 275 e15-23[DOI][PubMed]
  • 28. Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis. 2004; 39(6): 776-82[DOI][PubMed]
  • 29. Rioux C, Armand-Lefevre L, Guerinot W, Andremont A, Lucet JC. Acquisition of methicillin-resistant Staphylococcus aureus in the acute care setting: incidence and risk factors. Infect Control Hosp Epidemiol. 2007; 28(6): 733-6[DOI][PubMed]
  • 30. Gopal Rao G, Michalczyk P, Nayeem N, Walker G, Wigmore L. Prevalence and risk factors for meticillin-resistant Staphylococcus aureus in adult emergency admissions--a case for screening all patients? J Hosp Infect. 2007; 66(1): 15-21[DOI][PubMed]
  • 31. Kock R, Brakensiek L, Mellmann A, Kipp F, Henderikx M, Harmsen D, et al. Cross-border comparison of the admission prevalence and clonal structure of meticillin-resistant Staphylococcus aureus. J Hosp Infect. 2009; 71(4): 320-6[DOI][PubMed]
  • 32. Armin S, Rouhipour A, Fallah F, Rahbar M, Ebrahimi M. Vancomycin and Linezolid Resistant Staphylococcus in Hospitalized Children. Arch Ped Infect Dis. 2012; 1(1): 4-8[DOI]
  • 33. Rezaei M, Chavoshzadeh Z, Haroni N, Armin S, Navidinia M, Mansouri M, et al. Colonization With Methicillin Resistant and Methicillin Sensitive Staphylococcus aureus Subtypes in Patients With Atopic Dermatitis and Its Relationship With Severity of Eczema. Arch Ped Infect Dis. 2013; 1(2): 53-6[DOI]
  • 34. Rastegar Lari A, Pourmand MR, Ohadian Moghadam S, Abdossamadi Z, Ebrahimzadeh Namvar A, Asghari B. Prevalence of PVL-Containing MRSA Isolates Among Hospital Staff Nasal Carriers. Laboratory Medicine. 2011; 42(5): 283-6[DOI]
  • 35. Joshi S, Ray P, Manchanda V, Bajaj J, DS C, Gautam V. Methicillin resistant Staphylococcus aureus (MRSA) in India: prevalence and susceptibility pattern. Indian J Med Res. 2013; 137(2): 363-9[PubMed]
  • 36. Rajaduraipandi K, Mani KR, Panneerselvam K, Mani M, Bhaskar M, Manikandan P. Prevalence and antimicrobial susceptibility pattern of methicillin resistant Staphylococcus aureus: a multicentre study. Indian J Med Microbiol. 2006; 24(1): 34-8[PubMed]
  • 37. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother. 2002; 46(1): 1-11[PubMed]
  • 38. Saikia L, Nath R, Choudhury B, Sarkar M. Prevalence and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus in Assam. Indian J Crit Care Med. 2009; 13(3): 156-8[DOI][PubMed]
  • 39. Westh H, Zinn CS, Rosdahl VT. An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microb Drug Resist. 2004; 10(2): 169-76[DOI][PubMed]
  • 40. Pulimood TB, Lalitha MK, Jesudason MV, Pandian R, Selwyn J, John TJ. The spectrum of antimicrobial resistance among methicillin resistant Staphylococcus aureus (MRSA) in a tertiary care centre in India. Indian J Med Res. 1996; 103: 212-5[PubMed]
  • 41. Poorabbas B, Mardaneh J, Rezaei Z, Kalani M, Pouladfar G, Alami MH, et al. Nosocomial Infections: Multicenter surveillance of antimicrobial resistance profile of Staphylococcus aureus and Gram negative rods isolated from blood and other sterile body fluids in Iran. Iran J Microbiol. 2015; 7(3): 127-35[PubMed]
  • 42. Hassanzadeh P, Hassanzadeh Y, Mardaneh J, Rezai E, Motamedifar M. Isolation of Methicillin-Resistant Staphylococcus aureus (MRSA) from HIV Patients Referring to HIV Referral Center, Shiraz, Iran, 2011-2012. Iran J Med Sci. 2015; 40(6): 526-30[PubMed]
  • 43. Mehta AP, Rodrigues C, Sheth K, Jani S, Hakimiyan A, Fazalbhoy N. Control of methicillin resistant Staphylococcus aureus in a tertiary care centre: A five year study. Indian J Med Microbiol. 1998; 16(1): 31
  • 44. Sachdev D, Amladi S, Natraj G, Baveja S, Kharkar V, Mahajan S, et al. An outbreak of methicillin-resistant Staphylococcus aureus (MRSA) infection in dermatology indoor patients. Indian J Dermatol Venereol Leprol. 2003; 69(6): 377-80[PubMed]
  • 45. Che T, Bethel CR, Pusztai-Carey M, Bonomo RA, Carey PR. The different inhibition mechanisms of OXA-1 and OXA-24 beta-lactamases are determined by the stability of active site carboxylated lysine. J Biol Chem. 2014; 289(9): 6152-64[DOI][PubMed]
  • 46. Golemi-Kotra D, Cha JY, Meroueh SO, Vakulenko SB, Mobashery S. Resistance to beta-lactam antibiotics and its mediation by the sensor domain of the transmembrane BlaR signaling pathway in Staphylococcus aureus. J Biol Chem. 2003; 278(20): 18419-25[DOI][PubMed]
  • 47. Birck C, Cha JY, Cross J, Schulze-Briese C, Meroueh SO, Schlegel HB, et al. X-ray crystal structure of the acylated beta-lactam sensor domain of BlaR1 from Staphylococcus aureus and the mechanism of receptor activation for signal transduction. J Am Chem Soc. 2004; 126(43): 13945-7[DOI][PubMed]
  • 48. Borbulevych O, Kumarasiri M, Wilson B, Llarrull LI, Lee M, Hesek D, et al. Lysine Nzeta-decarboxylation switch and activation of the beta-lactam sensor domain of BlaR1 protein of methicillin-resistant Staphylococcus aureus. J Biol Chem. 2011; 286(36): 31466-72[DOI][PubMed]
  • 49. Thumanu K, Cha J, Fisher JF, Perrins R, Mobashery S, Wharton C. Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium. Proc Natl Acad Sci U S A. 2006; 103(28): 10630-5[DOI][PubMed]
  • 50. Llarrull LI, Toth M, Champion MM, Mobashery S. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J Biol Chem. 2011; 286(44): 38148-58[DOI][PubMed]
  • 51. Cha J, Mobashery S. Lysine N(zeta)-decarboxylation in the BlaR1 protein from Staphylococcus aureus at the root of its function as an antibiotic sensor. J Am Chem Soc. 2007; 129(13): 3834-5[DOI][PubMed]
  • 52. Fuda CC, Fisher JF, Mobashery S. Beta-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell Mol Life Sci. 2005; 62(22): 2617-33[DOI][PubMed]
  • 53. Wilke MS, Hills TL, Zhang HZ, Chambers HF, Strynadka NC. Crystal structures of the Apo and penicillin-acylated forms of the BlaR1 beta-lactam sensor of Staphylococcus aureus. J Biol Chem. 2004; 279(45): 47278-87[DOI][PubMed]
  • 54.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments