Archives of Pediatric Infectious Diseases

Published by: Kowsar

The Role of parC, parE, and qnrB Genes in Ciprofloxacin-Resistant Escherichia coli Isolates from Urinary Tract Infections

Marjan Iranzad 1 and Mojdeh Hakemi-Vala 2 , 3 , *
Authors Information
1 Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, IR Iran
2 Infectious Disease and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, IR Iran
3 Department of Microbiology, Medical School, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, IR Iran
Article information
  • Archives of Pediatric Infectious Diseases: July 2017, 5 (3); e41504
  • Published Online: January 18, 2017
  • Article Type: Research Article
  • Received: August 14, 2016
  • Revised: November 3, 2016
  • Accepted: December 3, 2016
  • DOI: 10.5812/pedinfect.41504

To Cite: Iranzad M, Hakemi-Vala M. The Role of parC, parE, and qnrB Genes in Ciprofloxacin-Resistant Escherichia coli Isolates from Urinary Tract Infections, Arch Pediatr Infect Dis. 2017 ; 5(3):e41504. doi: 10.5812/pedinfect.41504.

Abstract
Copyright © 2017, Pediartric Infections Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnote
References
  • 1. Foxman B, Barlow R, D'Arcy H, Gillespie B, Sobel JD. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol. 2000; 10(8): 509-15[PubMed]
  • 2. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002; 113 Suppl 1A: 5S-13S[PubMed]
  • 3. Nicolle LE. Epidemiology of urinary tract infections. Clin Microbiol Newsl. 2002; 24(18): 135-40[DOI]
  • 4. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014; 28(1): 1-13[DOI][PubMed]
  • 5. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13(5): 269-84[DOI][PubMed]
  • 6. Kahlmeter G. The ECOSENS Project: a prospective, multinational, multicentre epidemiological survey of the prevalence and antimicrobial susceptibility of urinary tract pathogens--interim report. J Antimicrob Chemother. 2000; 46(90001): 15-22[DOI]
  • 7. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010; 7(12): 653-60[DOI][PubMed]
  • 8. Chen YH, Ko WC, Hsueh PR. Emerging resistance problems and future perspectives in pharmacotherapy for complicated urinary tract infections. Expert Opin Pharmacother. 2013; 14(5): 587-96[DOI][PubMed]
  • 9. Kahlmeter G, Poulsen HO. Antimicrobial susceptibility of Escherichia coli from community-acquired urinary tract infections in Europe: the ECO.SENS study revisited. Int J Antimicrob Agents. 2012; 39(1): 45-51[DOI][PubMed]
  • 10. Azap OK, Arslan H, Serefhanoglu K, Colakoglu S, Erdogan H, Timurkaynak F, et al. Risk factors for extended-spectrum beta-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections. Clin Microbiol Infect. 2010; 16(2): 147-51[DOI][PubMed]
  • 11. Hooton TM. Fluoroquinolones and resistance in the treatment of uncomplicated urinary tract infection. Int J Antimicrob Agents. 2003; 22 Suppl 2: 65-72[PubMed]
  • 12. Viray M, Linkin D, Maslow JN, Stieritz DD, Carson LS, Bilker WB, et al. Longitudinal trends in antimicrobial susceptibilities across long-term-care facilities: emergence of fluoroquinolone resistance. Infect Control Hosp Epidemiol. 2005; 26(1): 56-62[DOI][PubMed]
  • 13. Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. New topoisomerase essential for chromosome segregation in E. coli. Cell. 1990; 63(2): 393-404[PubMed]
  • 14. Wentzell LM, Maxwell A. The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex. J Mol Biol. 2000; 304(5): 779-91[DOI][PubMed]
  • 15. Cheng G, Hao H, Dai M, Liu Z, Yuan Z. Antibacterial action of quinolones: from target to network. Eur J Med Chem. 2013; 66: 555-62[DOI][PubMed]
  • 16. Soussy CJ, Wolfson JS, Ng EY, Hooper DC. Limitations of plasmid complementation test for determination of quinolone resistance due to changes in the gyrase A protein and identification of conditional quinolone resistance locus. Antimicrob Agents Chemother. 1993; 37(12): 2588-92[PubMed]
  • 17. Hsu YH, Chung MW, Li TK. Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization. Nucleic Acids Res. 2006; 34(10): 3128-38[DOI][PubMed]
  • 18. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002; 99(8): 5638-42[DOI][PubMed]
  • 19. Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother. 2005; 49(1): 118-25[DOI][PubMed]
  • 20. Tran JH, Jacoby GA, Hooper DC. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrob Agents Chemother. 2005; 49(7): 3050-2[DOI][PubMed]
  • 21. Chen C, Villet R, Jacoby GA, Hooper DC. Functions of a GyrBA fusion protein and its interaction with QnrB and quinolones. Antimicrob Agents Chemother. 2015; 59(11): 7124-7[DOI][PubMed]
  • 22. Karlowsky JA, Hoban DJ, Decorby MR, Laing NM, Zhanel GG. Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant: results from the North American Urinary Tract Infection Collaborative Alliance-Quinolone Resistance study. Antimicrob Agents Chemother. 2006; 50(6): 2251-4[DOI][PubMed]
  • 23. Diekema DJ, BootsMiller BJ, Vaughn TE, Woolson RF, Yankey JW, Ernst EJ, et al. Antimicrobial resistance trends and outbreak frequency in United States hospitals. Clin Infect Dis. 2004; 38(1): 78-85[DOI][PubMed]
  • 24. Khodadoost M, Akya A, Taha A, Mansour S, Adabagher S. The frequency of antibiotic resistance and ctx-m gene in escherichia coli isolated. URMIA Med J. 2013; 24(5): 318-28
  • 25. Mohajeri P, Darfarin G, Farahani A. Genotyping of ESBL Producing Uropathogenic Escherichia coli in West of Iran. Int J Microbiol. 2014; 2014: 276941[DOI][PubMed]
  • 26. Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis. 2012; 2012: 976273[DOI][PubMed]
  • 27. Manges AR, Johnson JR, Foxman B, O'Bryan TT, Fullerton KE, Riley LW. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med. 2001; 345(14): 1007-13[DOI][PubMed]
  • 28. Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother. 2003; 47(10): 3222-32[PubMed]
  • 29. Breines DM, Ouabdesselam S, Ng EY, Tankovic J, Shah S, Soussy CJ, et al. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV. Antimicrob Agents Chemother. 1997; 41(1): 175-9[PubMed]
  • 30. Heisig P. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother. 1996; 40(4): 879-85[PubMed]
  • 31. Warburg G, Korem M, Robicsek A, Engelstein D, Moses AE, Block C, et al. Changes in aac(6')-Ib-cr prevalence and fluoroquinolone resistance in nosocomial isolates of Escherichia coli collected from 1991 through 2005. Antimicrob Agents Chemother. 2009; 53(3): 1268-70[DOI][PubMed]
  • 32. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007; 60(2): 394-7[DOI][PubMed]
  • 33. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, et al. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006; 50(4): 1178-82[DOI][PubMed]
  • 34. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006; 6(10): 629-40[DOI][PubMed]
  • 35. Pakzad I, Ghafourian S, Taherikalani M, Sadeghifard N, Abtahi H, Rahbar M, et al. qnr Prevalence in Extended Spectrum Beta-lactamases (ESBLs) and None-ESBLs Producing Escherichia coli Isolated from Urinary Tract Infections in Central of Iran. Iran J Basic Med Sci. 2011; 14(5): 458-64[PubMed]
  • 36. Kim ES, Chen C, Braun M, Kim HY, Okumura R, Wang Y, et al. Interactions between QnrB, QnrB mutants, and DNA gyrase. Antimicrob Agents Chemother. 2015; 59(9): 5413-9[DOI][PubMed]
  • 37. Abdi S, Ranjbar R, Hakemi Vala M, Jonaidi N, Baghery Bejestany O, Baghery Bejestany F. Frequency of bla TEM, bla SHV, bla CTX-M, and qnrA Among Escherichia coli Isolated From Urinary Tract Infection. Arch Clin Infect Dis. 2014; 9(1)[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments