Archives of Pediatric Infectious Diseases

Published by: Kowsar

Evaluation Synergistic Effect of TiO2, ZnO Nanoparticles and Amphiphilic Peptides (Mastoparan-B, Indolicidin) Against Drug-Resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii

Shalaleh Masoumi 1 , Mohammad Reza Shakibaie 1 , 2 , 3 , * , Melika Gholamrezazadeh 1 and Fatemeh Monirzadeh 1
Authors Information
1 Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, IR Iran
2 Research Center for Tropical and Infectious Disease, Kerman University of Medical Sciences, Kerman, IR Iran
3 Environmental Health Research Center, Kerman University of Medical Sciences, Kerman, IR Iran
Article information
  • Archives of Pediatric Infectious Diseases: July 2018, 6 (3); e57920
  • Published Online: June 26, 2018
  • Article Type: Research Article
  • Received: July 11, 2017
  • Revised: August 10, 2017
  • Accepted: October 23, 2017
  • DOI: 10.5812/pedinfect.57920

To Cite: Masoumi S, Shakibaie M R, Gholamrezazadeh M, Monirzadeh F. Evaluation Synergistic Effect of TiO2, ZnO Nanoparticles and Amphiphilic Peptides (Mastoparan-B, Indolicidin) Against Drug-Resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii, Arch Pediatr Infect Dis. 2018 ; 6(3):e57920. doi: 10.5812/pedinfect.57920.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Norouzi A, Azizi O, Hosseini H, Shakibaie S. Amino acid Substitution Mutations Analysis of gyrA and parC Genes in Clonal Lineage of Klebsiella pneumoniae conferring High-Level Quinolone Resistance. J Med Microbiol Infec Dis. 2014;2(3):109-17.
  • 2. Modarresi F, Azizi O, Shakibaie MR, Motamedifar M, Valibeigi B, Mansouri S. Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter baumannii. APMIS. 2015;123(11):959-68. doi: 10.1111/apm.12455. [PubMed: 26350174].
  • 3. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;44:278-84. doi: 10.1016/j.msec.2014.08.031. [PubMed: 25280707].
  • 4. Nataraj N, Anjusree GS, Madhavan AA, Priyanka P, Sankar D, Nisha N, et al. Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in ex vivo porcine skin model. J Biomed Nanotechnol. 2014;10(5):864-70. [PubMed: 24734539].
  • 5. Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nommiste E, et al. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B. 2015;142:178-85. doi: 10.1016/j.jphotobiol.2014.12.010. [PubMed: 25545332].
  • 6. Della Valle C, Visai L, Santin M, Cigada A, Candiani G, Pezzoli D, et al. A novel antibacterial modification treatment of titanium capable to improve osseointegration. Int J Artif Organs. 2012;35(10):864-75. doi: 10.5301/ijao.5000161. [PubMed: 23138702].
  • 7. Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ. A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) coped with silver, carbon, and sulfur. Langmuir. 2009;26(4):2805-10.
  • 8. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71-6. doi: 10.1111/j.1574-6968.2007.01012.x. [PubMed: 18081843].
  • 9. Swain P, Nayak SK, Sasmal A, Behera T, Barik SK, Swain SK, et al. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol. 2014;30(9):2491-502. doi: 10.1007/s11274-014-1674-4. [PubMed: 24888333].
  • 10. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227-49. doi: 10.2147/IJN.S121956. [PubMed: 28243086]. [PubMed Central: PMC5317269].
  • 11. Padmavathy N, Vijayaraghavan R. Interaction of ZnO nanoparticles with microbes--a physio and biochemical assay. J Biomed Nanotechnol. 2011;7(6):813-22. [PubMed: 22416581].
  • 12. Higashijima T, Uzu S, Nakajima T, Ross EM. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988;263(14):6491-4. [PubMed: 3129426].
  • 13. Lin CH, Lee MC, Tzen JTC, Lee HM, Chang SM, Tu WC, et al. Efficacy of Mastoparan-AF alone and in combination with clinically used antibiotics on nosocomial multidrug-resistant Acinetobacter baumannii. Saudi J Biol Sci. 2017;24(5):1023-9. doi: 10.1016/j.sjbs.2016.12.013. [PubMed: 28663698]. [PubMed Central: PMC5478288].
  • 14. Park NG, Yamato Y, Lee S, Sugihara G. Interaction of mastoparan-B from venom of a hornet in Taiwan with phospholipid bilayers and its antimicrobial activity. Biopolymers. 1995;36(6):793-801. doi: 10.1002/bip.360360611. [PubMed: 8555423].
  • 15. Park NG, Seo JK, Ku HJ, Lee S, Sugihara G, Kim KH, et al. Conformation and biological activity of mastoparan B and its analogs I. Bull Korean Chem Soci. 1997;18:933-8.
  • 16. Yang MJ, Lin WY, Lin CH, Shyu CL, Hou RF, Tu WC. Enhancing antimicrobial activity of mastoparan-B by amino acid substitutions. J Asia-Pacific Entomol. 2013;16:349-55.
  • 17. Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem. 1992;267(7):4292-5. [PubMed: 1537821].
  • 18. Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996;271(32):19298-303. [PubMed: 8702613].
  • 19. Jindal HM, Le CF, Mohd Yusof MY, Velayuthan RD, Lee VS, Zain SM, et al. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. PLoS One. 2015;10(6). e0128532. doi: 10.1371/journal.pone.0128532. [PubMed: 26046345]. [PubMed Central: PMC4457802].
  • 20. Kilian M, Bülow P. Rapid identification of Enterobacteriaceae. APMIS. 1979;87B:271-6.
  • 21. CLSI. Methods for dilution antimicrobial susceptibility testing of bacteria grow aerobically. Approved standard M7-A7. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2006.
  • 22. Dosler S, Gerceker AA. In vitro activities of antimicrobial cationic peptides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. J Chemother. 2012;24:137-43.
  • 23. Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ, et al. Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol. 2006;72(9):6111-6. doi: 10.1128/AEM.02580-05. [PubMed: 16957236]. [PubMed Central: PMC1563686].
  • 24. Scandorieiro S, de Camargo LC, Lancheros CA, Yamada-Ogatta SF. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol. 2016;23(7):760-6.
  • 25. Khan ST, Ahmad J, Ahamed M, Musarrat J, Al-Khedhairy AA. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. Biol Inorg Chem. 2016;21(3):295-303.
  • 26. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325-31. doi: 10.1128/AEM.02149-10. [PubMed: 21296935]. [PubMed Central: PMC3067441].
  • 27. Nambirajan G, Annamalai B, Shobana CS, Selvam KP. Indolicidin–Antibacterial activity against bacterial pathogens isolated from ocular infections. J Recent Res Sci Technol. 2014;6(2):7-9.
  • 28. Vila‐Farres X, Garcia de la Maria C, Lopez‐Rojas R, Pachon J, Giralt E, Vila J. In vitro activity of several antimicrobial peptides against colistin‐susceptible and colistin‐resistant Acinetobacter baumannii. Clinic Microbiol Infect. 2012;18(4):383-7.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments